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  As an example of momentum conservation of a many-particle system with non-
conservative forces between the particles, we considered a rocket in free space, subject to zero 
net external force.  It can begin to move by ejecting mass at a speed 𝑣𝑒𝑒 relative to the rocket.  
By conservation of momentum, the rocket gains an equal and opposite moment to that given to 
the ejected fuel.  While describing the momentum of the rocket + exhaust from an inertial 
reference frame we found that 𝑚𝑣̇ = −𝑣𝑒𝑒𝑚̇, where 𝑣 is the speed of the rocket, 𝑚 is its mass, 
and 𝑚̇ is the rate at which it is ejecting mass.  The thrust force on the rocket is −𝑣𝑒𝑒𝑚̇.  We also 
found an expression for the net change in velocity of the rocket as 𝑣 − 𝑣0 = 𝑣𝑒𝑒 ln𝑚0

𝑚
, where 𝑚0 

is the initial mass and 𝑚 is the final mass.  In order to maximize the rocket velocity one should 
maximize the exhaust speed 𝑣𝑒𝑒 and the ratio 𝑚0

𝑚
.  The exhaust speed typically depends on the 

violent exothermic chemical reaction that takes place in the rocket motor, making space flight 
fairly dangerous. 

We considered the equations of motion for a system of particles, like a baseball, as 
opposed to a point particle.  We first defined the center of mass of a multi-particle system as 
𝑅�⃗ = 1

𝑀
∑ 𝑚𝛼 𝑟𝛼𝑁
𝛼=1 , the weighted sum of the particle positions, where the total mass of the 

particles is 𝑀 = ∑ 𝑚𝛼
𝑁
𝛼=1 .  We can relate the total momentum of the system to the center of 

mass coordinate as 𝑃�⃗ = 𝑀𝑅�⃗ ̇ .  This shows that we can regard the total momentum of the system 
of particles as if it were a single particle of mass 𝑀 moving at the velocity of the center of mass.  

Further, after taking a time derivative we find that 𝑃�⃗ ̇ = 𝑀𝑅�⃗ ̈  (which assumes that 𝑀̇ = 0 and that 
all internal forces obey Newton’s third law), which is Newton’s second law for the system of 
particles in terms of the center of mass momentum derivative and acceleration.  This equation 
justifies our frequent treatment of extended objects (like a baseball, satellite, etc.) as point 
particles that move on a simple trajectory described by Newton’s second law of motion.  This 
treatment only considers the translational aspect of the motion of a system of particles.  Such 
systems can also show rotation while they are translating, and this aspect of the motion must also 
be understood. 

 To begin to understand rotational motion of a system of particles, consider first the 
rotation of a single particle about an arbitrarily chosen origin.  Angular momentum is a measure 
of the difficulty of bringing a rotating object to rest.  One can define the angular momentum of a 
single particle, relative to an arbitrarily chosen origin as ℓ�⃗ = 𝑟 × 𝑝⃗, where 𝑟 is the coordinate of 
the particle and 𝑝⃗ is its linear momentum.  We showed that the time-derivative of the angular 
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momentum is ℓ�⃗ ̇ = 𝑟 × 𝐹⃗ = Γ⃗, where we have defined the torque Γ⃗.  Torque is an influence that 
causes angular acceleration, just as force is an influence that causes linear acceleration.  Note 
that the angular momentum and torque must be calculated using the same origin. 

 When a planet orbits a star, it does so under the influence of gravity. Gravity exerts no 
torque on the planet (when the origin is chosen to be at the center of the star), hence its angular 
momentum is conserved.  This means that both �ℓ�⃗ � is fixed and that the direction of ℓ�⃗  is fixed.  
This latter statement means that the motion of the particle is confined to a plane spanned by the 𝑟 
and 𝑝⃗ vectors – essentially a reduction of the problem from 3D motion to 2D motion.  This 
allows us to use polar coordinates to describe the motion of the planet about the star.  We 
showed that the angular momentum is ℓ�⃗ = 𝑚𝑟2𝜙̇ 𝑧� , where  𝑧�  is the direction perpendicular to the 
plane formed by the position and momentum vectors of the planet, with the origin in the center 
of the star.  From this result one can show that the position vector of the planet sweeps out equal 

areas in equal times, 𝐴̇ = 1
2
�ℓ�⃗ �
𝑚

, known as Kepler’s second law of motion (illustrated below).  The 
red areas show the area swept out by the position vector over equal time intervals.  A1 = A2. 

 From http://outreach.atnf.csiro.au/education/senior/cosmicengine/renaissanceastro.html  

 Now consider a system of particles undergoing rotation.  One can write the total angular 
momentum of a system of particles as 𝐿�⃗ = ∑ 𝑟𝛼���⃗ × 𝑝𝛼����⃗𝑁

𝛼=1 .  The time rate of change of the total 

angular momentum vector is equal to the net external torque acting on the system: 𝐿�⃗ ̇ =
∑ 𝑟𝛼���⃗ × 𝐹𝑒𝑒𝑒�������⃗ = Γ⃗𝑒𝑒𝑒𝑁
𝛼=1 .  This is Newton’s second law of rotational motion for extended multi-

particle systems.  Its derivation assumes 1) all the internal forces are central in nature – they act 
along the line between the particles, and 2) the internal forces obey Newton’s third law. 

 It is often convenient to write the angular momentum of a rigid body in terms of the 
moment of inertia as:  𝐿𝑧 = 𝐼𝑧𝜔, where the axis of rotation coincides with the z-axis and the 
object has angular velocity 𝜔.  You will show for homework that 𝐼𝑧 = ∑ 𝑚𝛼(𝑥𝛼2 + 𝑦𝛼2)𝑁

𝛼=1 .  
Later we will attack the general problem of an arbitrary object underdoing rotation about an 
arbitrary axis.  This will lead to introduction of the inertia tensor to relate the angular velocity 
vector to the angular momentum vector. 

http://outreach.atnf.csiro.au/education/senior/cosmicengine/renaissanceastro.html
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 We then considered the problem (Taylor 3.35) of a solid disk rolling down an inclined 
plane, and solved for the acceleration of the center of mass.  When considering Newton’s laws 
applied to systems of particles, one often has to make an extended free-body diagram.  In other 
words, instead of treating the object as a point particle with all forces applied at that point, one 
has to consider the extended 3D object and note the locations of the point of application of the 
various forces.  In the rolling disk problem, the force of gravity (weight) acts at the CM (as 
proven above), while the normal force and static friction force are applied at the point of contact 
of the disk and the inclined plane.  One then must choose an origin and calculate the net torque 
and angular moment about that origin to finally employ Newton’s second law for rotational 

motion: 𝐿�⃗ ̇ = Γ⃗𝑒𝑒𝑒. 

 

 


